# Design, Develop And Analysis Of Effortless Pressure Regulator Considering Pressure Vessel Aspect

## M. B. Chopade<sup>1</sup>, S.N. Khan<sup>2</sup>

<sup>1,2</sup>Mechanical (Design), Pune University Rajarshi Shahu College of Engineering, Tathawade

#### Abstract

This research paper presents on reducing higher pressure forces towards adjusting knob device, new design with effortless operating safe condition by considering Pressure Vessel calculations towards Pressure Equipment Directive. This modular type design reduces the potential effort during pressure regulating at higher pressure ranges and increases the safety level which offers the most reliable product performance. If the operating load increases, then the regulator flow must increase in order to keep the controlled pressure. Once inlet pressure is introduced, the open poppet allows flow. By adjusting the top knob, the downward pressure on the control devise can be increased, requiring more pressure in the upper chamber to maintain equilibrium. In this way, the outlet pressure of the regulator is controlled. So with every rotation Knob has overcome the friction due to higher pressurized fluid forces on Knob. This experienced that increase in the pressure, effort required to turn the knob also increases. Pressure regulators are meant for frequent pressure adjustments, and then the problem for operator to adjust the pressure as manual efforts are required is really high which goes to not availability of higher pressure range manually operated pressure regulator.

Here project focus on reducing higher pressure forces towards adjusting knob device, new design with effortless operating on safety conditions by considering Pressure Vessel calculations towards Pressure Equipment Directive.

Keywords: Pneumatic Regulator, effortless operating, pressure vessel, PED

#### 1. Introduction

Pressure regulators are used in a host of fluid dynamic systems to maintain certain pressures or pressure drops constant in the face of variations in system parameters and/or external disturbances.

Tsai and Cassidy [1] considered the dynamics of a single pneumatic pressure reducer. Stability criteria in terms of reducer design and operating parameters were formulated for a linearized model. John Darlaston [2] describes A general perception is that safety factors are there to provide confidence in the safe use of an engineering component, assembly or system. Pressure equipment by its nature is potentially hazardous and needs factors of safety to provide a margin against failure from uncertainties in design, materials, manufacture, inspection, and subsequently in operation.

Different factors of safety may guard against the same uncertainty. In relation to uncertainty in manufacture, design standards provide for a reduction in the design safety factor with increasing inspection requirements. An example of this is the European Unfired Pressure Vessel standard, EN 13445:2002 [3].

The American, Henry Petrowski made many statements on safety and reliability, two of which are worthy of note in the context of this paper [4]. The first one explains that failure is central to the design process in that more is learnt from failures than from success.

The UK and European legislation requirements on conformity assessment of 'new' equipment provide an example of factors of safety within the control and monitoring of the pressure equipment. In the Pressure Equipment Directive [5] hazard categories are identified. The risk is defined in terms of the stored energy and the process fluid. These terms are used to determine the measures that have to be taken to demonstrate

conformity with the essential safety requirements. There is increasing stringency on conformity assessment depending on hazard category. It is worthwhile examining this process as it regularises the approach for non-nuclear components and is not far removed from the approach for nuclear components.

The Directive requires that all pressure equipment and assemblies designed to operate above 0.5 bar and within its scope must be safe when placed on the market and put into service.

The controlling legislation for placing pressure equipment on the market or putting into service within Europe comes from European Union Directives. An important instrument is the Pressure Equipment Directive [5] that is transposed into UK legislation as the Pressure Equipment Regulations [6]. Annex I of the Directive (PED) defines Essential Safety requirements for pressure equipment but not the means for achieving them.

Dhananjay Singh Bisht [7] describes the segment of industrial products, hand held products occupy a major section. An important issue in design of these products is to identify the

factors that lead to human comfort and those leading to discomfort.

'This Paper came with design of Pressure Regulator with reducing higher pressure forces towards adjusting device, new design with effortless operating on safety conditions by considering Pressure Vessel calculations towards Pressure Equipment Directive.'

### 2. Methodology

Below is the Pressure Regulator assembly, operated by spring force applied on the piston. Below image shows the different components associated with Regulator assembly which are designed for safe stress level and force distributed among each dynamic situation.



Pressure regulator is pressure-reducing valves; maintain constant output pressure in compressed-air systems regardless of variations in input pressure or output flow. Fig 1 The Special arrangement of internal Piston, spring, Stem and Bonnet.

Fig. 1 shows the modular design reduces the potential effort during adjustment of pressure regulating at higher pressure ranges and increases the safety level which offers the most reliable product performance.

Here major component which exerts forces on the adjusting devise are Piston spring, Piston with Fluid forces.



Bill OF Material (BOM)

|    | Balloon No. | Part Name           | Qty |
|----|-------------|---------------------|-----|
|    | 1           | Bonnet              | 1   |
| Γ  | 2           | Lock Nut            | 1   |
| 3- |             | Valve Body          | 1   |
| Ļ  | 4           | Piston              | 1   |
|    | 5           | Disc Holder         | 1   |
|    | 6           | Stem                | 1   |
|    | 7           | Knob                | 1   |
|    | 8           | End Cap             | 1   |
|    | 9           | Flat Seal           | 1   |
|    | 10          | Screw M10           | 12  |
|    | 11          | Spring –Disc Holder | 1   |
|    | 12          | Spring-Stem         | 1   |
|    | 13          | Spring-Piston       | 1   |
|    | 14          | O-Ring              | 1   |
|    | 15          | O-Ring              | 1   |
|    | 16          | O-Ring              | 1   |
|    | 17          | U Seal              | 2   |

Pressure Regulator responds on dynamic pressure forces, which acts on the above listed components fig. 1 throughout the applicable pressure range 0-20 bar.

Done a systematic pressure balance calculation to responds to pressure variation, designed a functional dimensions of piston, orifice, spring force requirement.

Fig. 1 Exploded view of Pressure Regulator assembly



Fig. 2 Cross-section view of Functional flow path

| Table 2                                   |
|-------------------------------------------|
| Calculation for valve performance against |
| Pressure equipment directive              |

| Input                             |                 |            |         |                |  |
|-----------------------------------|-----------------|------------|---------|----------------|--|
| Parameters                        | Symbols         |            | Values  | Units<br>- IPS |  |
| Material Properties               |                 |            |         |                |  |
| Aluminum 6026-T                   | 9 : Valve B     | ody Compor | ients   |                |  |
| Modulus Of<br>Elasticity          | E <sub>al</sub> |            | 70.0    | GPa            |  |
| Tensile Strength                  | σBb             |            | 240     | MPa            |  |
| 0.2% Yield<br>Limit               | Rpb             |            | 160     | MPa            |  |
| Carbon Steel H.R.3000: Fastner    |                 |            | _       |                |  |
| Tensile Strength                  | σBb             |            | 827.37  | MPa            |  |
| Yield Limit<br>=σBb*0.8           | Rpb             |            | 661.897 | MPa            |  |
| Stainless Steel AISI 305 : Spring |                 |            |         |                |  |
| Modulus Of<br>Elasticity          | Ebr             |            | 200     | GPa            |  |
| Tensile Strength                  | σBb             |            | 586     | MPa            |  |
| 0.2% Yield<br>Limit               | Rpb             |            | 207     | MPa            |  |

#### Calculations

**1. STRESS IN BODY BY INTERNAL PRESSURE** Pipe Size: 1/2" DN15 (20.95 mm Outside Dia.)

| Maximum operating<br>pressure differential<br>(MOPD)                      | PS                 | 1     | Bar |
|---------------------------------------------------------------------------|--------------------|-------|-----|
| Safe working pressure<br>(SWP)                                            | PW                 | 20    | Bar |
| Minimum burst pressure<br>(according to calculation)                      | Р                  | 40    | Bar |
| Safety factor on MOPD                                                     | $v = \frac{P}{PS}$ | 40    | Bar |
| Pressure Regulator Body S                                                 | pecification       |       |     |
| Pipe Size DN15                                                            | DN                 | 20.95 | mm  |
| Wall thickness body at pipe connection                                    | DNt                | 5     | mm  |
| Inside diameter of body                                                   | D                  | 58    | mm  |
| Wall thickness of body                                                    | t                  | 4     | mm  |
| Flange thickness of body<br>or thread depth of screws<br>(smallest value) | tfb                | 8     | mm  |
| Body material<br>Aluminum 6026-T9                                         | Matbody            |       |     |



| Inside radius of bo                                                                                                                   | ody                        | $Ri = \frac{D}{2}$                     | 29     | mm  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|--------|-----|--|
| Outside radius of b                                                                                                                   | oody                       | $Ru = \frac{D}{2} + t$                 | 34     | mm  |  |
| Values To Be Calo                                                                                                                     |                            |                                        |        |     |  |
| Longitudinal<br>Stress                                                                                                                | $\sigma 1 = \frac{F}{Ru}$  | $P \times Ri^2$<br>$u^2 - Ri^2$        | 10.68  | MPa |  |
| Maximum<br>circumferential<br>stress at wall                                                                                          | $\sigma 2 = P[$            | $\frac{Ru^2 + Ri^2}{Ru^2 - Ri^2}]$     | 25.36  | MPa |  |
| Maximum radial stress at                                                                                                              | σ3 = (-P                   | )                                      | -4.00  | MPa |  |
| Maximum<br>equivalent stress<br>at wall                                                                                               | $\sigma_e = \sqrt{\sigma}$ | $\sigma 1^2 + \sigma 2^2 + \sigma 3^2$ | 34.191 | MPa |  |
| <b>Result:</b> Here $\sigma e < Mat_{body}$ : Maximum equivalent stress at wall are Safe; value is below the maximum allowable stress |                            |                                        |        |     |  |
|                                                                                                                                       |                            |                                        |        |     |  |

## www.ijreat.org

body

| <b>1.1</b> ) Calculation of stress in body, caused by force applied on                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|--|
| pipe.                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
| Forces acting on pipe and body according to EN 161                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
| moment on                                                                                                                                                                                                                                                                                                                                                                                                                                          | М1                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104                                                    | 105                                                   |                                              |  |
| 1/2" nine                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1111                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.                                                    | ,                                                     | N.m                                          |  |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
| modulus of                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(2DN)^4 DN^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                       |                                              |  |
| minimum cross                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wp                                                                                                  | $= \frac{\pi}{22} \cdot \frac{\left[ \left( D \right] + 1 \right]}{(T)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1}{2} \frac{1}{2} \frac{1}$ | 230                                                    | 00                                                    | mm^3                                         |  |
| section of pipe                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                     | 52 (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $pin + 2 \cdot Din_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250                                                    |                                                       | mm 5                                         |  |
| connection                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
| bending stress                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                     | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
| at pipe                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma_b$                                                                                          | $= \frac{1}{Wn}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.                                                    | 45.661                                                | MPa                                          |  |
| connection                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     | пp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
| Result: Maximu                                                                                                                                                                                                                                                                                                                                                                                                                                     | ım be                                                                                               | ending st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ress at pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | conne                                                  | ection                                                | is                                           |  |
| $\sigma_h < Mat_{hody}$                                                                                                                                                                                                                                                                                                                                                                                                                            | valu                                                                                                | ie is be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | low the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aximu                                                  | m al                                                  | lowable                                      |  |
| stress                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
| 511 055                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       | -                                            |  |
| 12) Calculation                                                                                                                                                                                                                                                                                                                                                                                                                                    | ofetr                                                                                               | ese in ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ly caused b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v torg                                                 | 10 000                                                | lied or                                      |  |
| nine                                                                                                                                                                                                                                                                                                                                                                                                                                               | or su                                                                                               | c 35 111 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iy, caused b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y torq                                                 | ic app                                                |                                              |  |
| Torque acting on                                                                                                                                                                                                                                                                                                                                                                                                                                   | nine                                                                                                | and hody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nine accor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ding to                                                | EN 1                                                  | 61                                           |  |
| Torque on                                                                                                                                                                                                                                                                                                                                                                                                                                          | pipe                                                                                                | and body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pipe accor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ang it                                                 |                                                       |                                              |  |
| 1/2" nine                                                                                                                                                                                                                                                                                                                                                                                                                                          | T15                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                     |                                                       | Nm                                           |  |
| (DN15                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                     |                                                       | 14.111                                       |  |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | _                                                     |                                              |  |
| torque to be                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
| applied on                                                                                                                                                                                                                                                                                                                                                                                                                                         | т                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                     |                                                       | Nm                                           |  |
| nine                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                     |                                                       | 1,0.111                                      |  |
| pipe                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
| connection                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                       |                                              |  |
| connection<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                       |                                              |  |
| connection<br>Section<br>modulus of                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     | π [(DN +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2 (DN_{1})^{4} - DN_{4}^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                       |                                              |  |
| connection<br>Section<br>modulus of<br>minimum                                                                                                                                                                                                                                                                                                                                                                                                     | W <sub>t</sub> :=                                                                                   | $=\frac{\pi}{16}\cdot\frac{\left[\left(DN+1\right)\right]}{\left(DN+1\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(2 \cdot DN_t)^4 - DN^4$<br>N + 2 · DN_t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                      |                                                       |                                              |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section                                                                                                                                                                                                                                                                                                                                                                                    | W <sub>t</sub> :=                                                                                   | $=\frac{\pi}{16}\cdot\frac{\left[\left(\mathrm{DN}+1\right)\right]}{\left(\mathrm{DN}+1\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{2 \cdot DN_t^2 - DN_t^4}{N + 2 \cdot DN_t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 459                                                    | )9                                                    | mm^3                                         |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe                                                                                                                                                                                                                                                                                                                                                                         | W <sub>t</sub> :=                                                                                   | $=\frac{\pi}{16}\cdot\frac{\left[\left(\mathrm{DN}+1\right)\right]}{\left(\mathrm{DN}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{2 \cdot DN_t^2 - DN^4}{N + 2 \cdot DN_t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 459                                                    | 99                                                    | mm^3                                         |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection                                                                                                                                                                                                                                                                                                                                                           | W <sub>t</sub> :=                                                                                   | $=\frac{\pi}{16}\cdot\frac{\left[\left(DN+1\right)\right]}{\left(DN+1\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{2 \cdot DN_t}{N + 2 \cdot DN_t} + \frac{1}{2} $     | 459                                                    | 99                                                    | mm^3                                         |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum                                                                                                                                                                                                                                                                                                                                                | W <sub>t</sub> :=                                                                                   | $=\frac{\pi}{16}\cdot\frac{\left[\left(DN+1\right)\right]}{\left(DN+1\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{2 \cdot DN_t}{V} - DN^4 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 459                                                    | 99                                                    | mm^3                                         |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at                                                                                                                                                                                                                                                                                                                             | W <sub>t</sub> :=                                                                                   | $=\frac{\pi}{16} \cdot \frac{\left[\left(DN+1\right)\right]}{\left(DN+1\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{2 \cdot DN_t}{V} - DN^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 459                                                    | 99                                                    | mm^3                                         |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section                                                                                                                                                                                                                                                                                                            | w <sub>t</sub> :=                                                                                   | $= \frac{\pi}{16} \frac{\left[ \left( \text{DN} + 1 \right)^2 \right]}{\left( \text{DN} + 1 \right)^2}$ $= \frac{T}{16} \frac{T}$ | $2 DN_i t^4 - DN_i^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 459                                                    | 872                                                   | mm^3<br>MPa                                  |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe                                                                                                                                                                                                                                                                                                 | $w_t :=$<br>$\tau t =$                                                                              | $= \frac{\pi}{16} \frac{\left[ (DN + T) + T \right]}{(DN + T)}$ $= \frac{T}{W_t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{2 \cdot DN_i d^4 - DN_i^4}{4 + 2 \cdot DN_i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 459                                                    | 872                                                   | mm^3<br>MPa                                  |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection                                                                                                                                                                                                                                                                                   | $W_t :=$<br>$\tau t =$                                                                              | $= \frac{\pi}{16} \cdot \frac{\left[ (DN + T) + T \right]}{(DN + T)}$ $= \frac{T}{W_t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{2 \cdot DN_i j^4 - DN_i^4}{4 + 2 \cdot DN_i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 459                                                    | 99<br>872                                             | mm^3<br>MPa                                  |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection                                                                                                                                                                                                                                                                                   | $W_t :=$<br>$\tau t =$                                                                              | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} \right]}{(DN + 1)}$ $= \frac{T}{W_t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{2 \cdot DN_i d^4 - DN_i^4}{4 + 2 \cdot DN_i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 459                                                    | 872                                                   | mm^3<br>MPa                                  |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection                                                                                                                                                                                                                                                                                   | $W_t :=$<br>$\tau t =$<br>um sl                                                                     | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{(DN + 1)}$ $= \frac{T}{W_t}$ hear stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{2 \cdot DN_i + DN_i^4}{(1 + 2 \cdot DN_i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 459<br>10.                                             | 99<br>872<br>ion is                                   | mm^3<br>MPa                                  |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection<br>Result: Maximu<br>rt <0.67. Matheoutical<br>Maximum                                                                                                                                                                                                                            | $w_t :=$<br>$\tau t =$<br>$um sl_{dy}; V$                                                           | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$ $= \frac{T}{W_t}$ hear streevalue is b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{2 \cdot DN_i + DN_i^4}{(1 + 2 \cdot DN_i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 459<br>10.<br>onnect                                   | 99<br>872<br>ion is<br>m all                          | mm^3<br>MPa                                  |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection<br>Result: Maximu<br>rt <0.67. Mat <sub>bo</sub><br>stress.                                                                                                                                                                                                                       | $w_t = \tau t =$<br>um sl<br>dy ; V                                                                 | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$ $= \frac{T}{W_t}$ The event stree value is been been as the stree value is been as the st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2 \cdot DN_i + DN_i^4}{(1 + 2 \cdot DN_i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 459<br>10.<br>onnect                                   | 99<br>872<br>ion is<br>m all                          | mm^3<br>MPa                                  |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection<br>Result: Maximu<br>rt <0.67. Mat <sub>bo</sub>                                                                                                                                                                                                                                  | $W_t :=$<br>$\tau t =$<br>$um sl_{dy}; V$                                                           | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$<br>= $\frac{T}{W_t}$<br>hear stree<br>Value is b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2 \cdot DN_i + DN_i^4}{(1 + 2 \cdot DN_i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.                                                    | 9<br>872<br>ion is<br>m all                           | mm^3<br>MPa                                  |  |
| connection         Section         modulus of         minimum         cross section         of pipe         connection         Maximum         shear stress at         cross-section         at pipe         connection                                                                                                                                                                                                                            | $W_t :=$<br>$\tau t =$<br>$um sl_{dy}; V$                                                           | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$<br>= $\frac{T}{W_t}$<br>hear stree<br>Value is b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2 \cdot DN_i + DN_i^4}{(1 + 2 \cdot DN_i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 459<br>10.<br>onnect                                   | 99<br>872<br>ion is<br>m all                          | mm^3<br>MPa                                  |  |
| connection         Section         modulus of         minimum         cross section         of pipe         connection         Maximum         shear stress at         cross-section         at pipe         connection         Result: Maximum         stress.                                                                                                                                                                                    | $W_t :=$<br>$\tau t =$<br>$um sl_{dy}; V$                                                           | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$<br>= $\frac{T}{W_t}$<br>hear stree<br>Value is b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2 \cdot DN_{i})^{4} - DN_{i}^{4}}{N + 2 \cdot DN_{i}}$ ss at pipe c<br>relow the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 459<br>10.<br>onnect<br>aximu                          | 872<br>ion is<br>m all                                | mm^3<br>MPa<br>owable                        |  |
| connection         Section         modulus of         minimum         cross section         of pipe         connection         Maximum         shear stress at         cross-section         at pipe         connection         Result: Maximum         stress.                                                                                                                                                                                    | $w_{t} = \tau t =$ $um sl_{dy}; V$ $stress$                                                         | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$<br>The example the set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{2 \cdot DN_i + DN_i^4}{(1 + 2 \cdot DN_i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 459<br>10.<br>onnect<br>aximu                          | 872<br>ion is<br>m all                                | mm^3<br>MPa<br>owable                        |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection<br><b>Result: Maximu</b><br>rt <0.67. <i>Mat</i> <sub>bo</sub><br>stress.                                                                                                                                                                                                         | $w_t = \tau t =$ <b>um sl</b> <sub>dy</sub> ; <b>V</b>                                              | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$ $= \frac{T}{W_t}$ The event of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2 \cdot DN_{i})^{4} - DN^{4}}{N + 2 \cdot DN_{i}}$ ss at pipe c<br>elow the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 459<br>10.<br>onnect<br>aximu                          | 99<br>872<br>iion is<br>m all                         | mm^3<br>MPa<br>owable                        |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection<br><b>Result: Maximu</b><br>rt <0.67. <i>Mat</i> <sub>bo</sub><br>stress.                                                                                                                                                                                                         | $w_t = \tau t =$ $\tau t =$ $um sl_{dy}; V$ $d_y; V$ $d_y; V$                                       | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$ $= \frac{T}{W_t}$ The event of the event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{2 \cdot DN_i + DN_i + DN_i}{N + 2 \cdot DN_i}$ ss at pipe c<br>elow the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 459<br>10.<br>onnect<br>aximu                          | 99<br>872<br>ion is<br>m all<br><u>mal p</u><br>026-1 | mm^3<br>MPa<br>owable<br>ressure             |  |
| connection         Section         modulus of         minimum         cross section         of pipe         connection         Maximum         shear stress at         cross-section         at pipe         connection         Result: Maximum         rt <0.67. Mat <sub>bob</sub> stress.         2. Calculation of         Bonnet Specifica         Bonnet Material         Wall thickness of                                                  | $w_t = \tau t =$ $\tau t =$ $um sl_{dy}; V$ $dy; V$ $f$                                             | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN)} + $                                                                                                                                                                                                                                                                                                   | $\frac{2 \cdot DN_i + DN_i + DN_i}{N + 2 \cdot DN_i}$ ss at pipe c<br>elow the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 459<br>10.<br>onnect<br>aximu                          | 99<br>872<br>ion is<br>m all<br>026-1                 | mm^3<br>MPa<br>owable<br>ressure             |  |
| connection         Section         modulus of         minimum         cross section         of pipe         connection         Maximum         shear stress at         cross-section         at pipe         connection         Result: Maximum         rt <0.67. Mat <sub>bob</sub> stress.         2. Calculation of         Bonnet Specifica         Bonnet Material         Wall thickness o         bonnet at inside                          | $w_t = \tau t =$ $\tau t =$ $um sl_{dy}; V$ $stress$ $tition$ $f$                                   | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN)} + $                                                                                                                                                                                                                                                                                                 | $\frac{2 \cdot DN_i + DN_i + DN_i}{N + 2 \cdot DN_i}$ ss at pipe c<br>selow the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 459<br>10.<br>onnect<br>aximu<br>oy inter<br>AL 6<br>5 | 99<br>872<br>ion is<br>m all<br>026-1                 | mm^3<br>MPa<br>owable<br>ressure             |  |
| connection         Section         modulus of         minimum         cross section         of pipe         connection         Maximum         shear stress at         cross-section         at pipe         connection         Result: Maximum         rt <0.67. Matbody                                                                                                                                                                          | $w_{t} =$ $\tau t =$ $um slaphi dy; V$ $stress$ $tition$ $f$                                        | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$ $= \frac{T}{W_t}$ $=$                                                                                                                                                                                                                                                                                                                                           | $\frac{2 \cdot DN_{i})^{4} - DN^{4}}{N + 2 \cdot DN_{i}}$ ss at pipe c<br>elow the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 459<br>10.<br>onnect<br>aximu<br>Dy inter<br>AL 6<br>5 | 99<br>872<br>ion is<br>m all<br>026-1                 | mm^3<br>MPa<br>owable<br>ressure             |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection<br><b>Result: Maximu</b><br><b>rt &lt;0.67. Mat</b> <sub>bo</sub><br><b>stress.</b><br><b>2.</b> Calculation of<br>Bonnet Specifica<br>Bonnet Material<br>Wall thickness of<br>bonnet at inside<br>diameter of body<br>Values To Be Ca                                            | $w_{t} =$ $\tau t =$ $um sl$ $dy ; V$ $stress$ $ution$ $f$ $ducula$                                 | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$ $= \frac{T}{W_t}$ $=$                                                                                                                                                                                                                                                                                                                                           | $\frac{2 \cdot DN_{i} + DN_{i} + DN_{i}}{N + 2 \cdot DN_{i}}$ ss at pipe c<br>elow the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 459<br>10.<br>onnect<br>aximu<br>Dy inter<br>AL 6<br>5 | 99<br>872<br>ion is<br>m all<br>026-1                 | mm^3<br>MPa<br>owable<br>ressure             |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection<br><b>Result: Maximu</b><br><b>rt &lt;0.67. Mat</b> <sub>bo</sub><br><b>stress.</b><br><b>2.</b> Calculation of<br>Bonnet Specifica<br>Bonnet Material<br>Wall thickness o<br>bonnet at inside<br>diameter of body<br>Values To Be Ca<br>Bending                                  | $w_{t} = \frac{\tau t}{\tau t} = \frac{\tau t}{s}$                                                  | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$ $= \frac{T}{W_t}$ $=$                                                                                                                                                                                                                                                                                                                                           | 22DN,) <sup>4</sup> - DN <sup>4</sup><br>N + 22DN,)<br>ss at pipe c<br>relow the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 459<br>10.<br>onnect<br>aximu                          | 99<br>872<br>ion is<br>m all<br>026-1                 | mm^3<br>MPa<br>owable<br>ressure             |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection<br><b>Result: Maximu</b><br><b>tt &lt;0.67. Mat</b> <sub>bo</sub><br><b>stress.</b><br><b>2.</b> Calculation of<br>Bonnet Specifica<br>Bonnet Material<br>Wall thickness o<br>bonnet at inside<br>diameter of body<br>Values To Be Ca<br>Bending<br>moment in                     | $w_{t} =$ $\tau t =$ $um sl_{dy}; V$ $\overline{stress}$ $\overline{stress}$ $\overline{f}$ $f$     | $= \frac{\pi}{16} \frac{\left[ (DN + 1) + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}{\left( DN + \frac{1}{16} + \frac{1}{(DN + 1)} \right]}$ $= \frac{T}{W_t}$ hear streevel is been been been been been been been bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{2 \cdot DN_{i}^{4} - DN_{i}^{4}}{N + 2 \cdot DN_{i}}$ ss at pipe c<br>relow the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 459<br>10.<br>onnect<br>aximu                          | 99<br>872<br>ion is<br>m all<br>026-1                 | mm^3<br>MPa<br>owable<br>ressure             |  |
| connection<br>Section<br>modulus of<br>minimum<br>cross section<br>of pipe<br>connection<br>Maximum<br>shear stress at<br>cross-section<br>at pipe<br>connection<br><b>Result: Maximu</b><br><b>tt &lt;0.67. Mat</b> <sub>bo</sub><br><b>stress.</b><br><b>2.</b> Calculation of<br>Bonnet Specifica<br>Bonnet Material<br>Wall thickness o<br>bonnet at inside<br>diameter of body<br>Values To Be Ca<br>Bending<br>moment in<br>bonnet at inside | $w_{t} =$ $\tau t =$ $um sl_{dy}; V$ $\overline{stress}$ $\overline{stress}$ $\overline{f}$ $f$ $M$ | $= \frac{T}{16} \frac{(DN + 1)}{(DN + 1)}$ $= \frac{T}{W_t}$ hear stree<br>value is by s in bonnum $Mat_{bon}$ $t_b$ ted $= \frac{P}{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{2 \text{ DN}_{i})^{4} - \text{DN}^{4}}{N + 2 \text{ DN}_{i}}$ ss at pipe c<br>relow the m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 459<br>10.<br>0000000000000000000000000000000000       | 99<br>872<br>ion is<br>m all<br>026-1                 | mm^3<br>MPa<br>owable<br>ressure<br>T9<br>mm |  |

| Maximum<br>bending stress at $\sigma_{bon}$<br>bonnet wall                                                                        | $= \frac{M_{bonnet} \times 6}{tb^2}$                                 | 39.422       | MPa    |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------|--------|--|--|--|--|
|                                                                                                                                   |                                                                      |              |        |  |  |  |  |
| 2.1) Calculation of stress<br>internal pressure                                                                                   | s in flange of bonn                                                  | et/body, cau | sed by |  |  |  |  |
| Sb<br>Ts<br>Tn<br>Fw                                                                                                              |                                                                      |              |        |  |  |  |  |
| Flange thickness of<br>bonnet at pitch<br>diameter                                                                                | tf                                                                   | 12           | mm     |  |  |  |  |
| Flange width                                                                                                                      | Fw                                                                   | 20           | mm     |  |  |  |  |
| Pitch diameter of<br>bonnet screws                                                                                                | Tn                                                                   | 90           | mm     |  |  |  |  |
| Number of bonnet<br>screws                                                                                                        | n                                                                    | 6            |        |  |  |  |  |
| Size of screw holes in bonnet                                                                                                     | Sb                                                                   | 10.5         | mm     |  |  |  |  |
| Values To Be Calculated                                                                                                           |                                                                      |              |        |  |  |  |  |
| Pitch between<br>two screws $Ts = 2$                                                                                              | $Tn \times sin \frac{180}{n}$                                        | 45           | mm     |  |  |  |  |
| Force per<br>section due to<br>internal<br>pressure                                                                               | $=\pi \times D^2 \times \frac{P}{4n}$                                | 1761.386     | N      |  |  |  |  |
| Stress in<br>Bonnet/body<br>at screw holes                                                                                        | $=\frac{F_{t} \cdot T_{s}}{2 \cdot (F_{w} - S_{b}) \cdot t_{f}^{2}}$ | 28.710       | MPa    |  |  |  |  |
| <b>Result:</b> Maximum bending stress at bonnet/body flange is $\tau t < Mat_{bon}$ ; value is below the maximum allowable stress |                                                                      |              |        |  |  |  |  |

Design has been evaluated through analytical calculation and stress are below the maximum allowable stress at higher working pressure i.e. 20 bar. Direct acting Pressure regulator at higher pressure range, which generally not easily available in market. So considering pressure vessel aspect Valve is Safe.

Print LWA

Fig. 4 Boundary conditions Internal Pressure=40 Bar & Constrained Pipe Location in body.

This new Design has been done to perform valve function at higher pressure condition up to 20 bar internal pneumatic pressure.

## 3. Results and Discussion

#### 3.1 Stress Analysis

3D CAD model is created in Pro-Engineering to define the Functional dimension analysis and Fit function analysis. FEA is performed in ANSYS workbench.



Fig. 3 FEA Simulation stress distribution



Fig. 5 Component wise stress distribution on the Bonnet at 40 bar internal pressure condition



Fig.6 Component wise stress distribution on the body at 40 bar internal pressure condition

Table 3 Comparison table

|                                                 | Calculated<br>(MPA) | FEA<br>(MPA) |
|-------------------------------------------------|---------------------|--------------|
| $\sigma_e =$ Sress in body by internal pressure | 34.191              | 34.628       |
| σbo=Maximum bending<br>stress at bonnet wall    | 45.661              | 39.422       |

### 3.2 Force Analysis to evaluate Torque requirement

A pressure regulator Fig 7 has a sensing element piston which, on one side, is subjected to a load force (Fs5) created by a spring (as shown below force diagram) or can be a gas pilot pressure. On the other side, the sensing element is subject to the force (Fp4) of the system fluid.



Fig.7 Force Balance Analysis

The function of a pressure-reducing regulator is to reduce a pressure and to keep this pressure as constant as possible while the inlet pressure and the flow may vary. This is accomplished by the fluid force (Fp4) being equal to or slightly lower than load force (Fs5) causing the poppet to open by overcoming Fs3.

Table 4 Force evaluation under dynamic condition

|                           | Pressure | Piston          | Effective             | Force  |
|---------------------------|----------|-----------------|-----------------------|--------|
|                           | (Bar)    | Diameter        | Piston                | (N)    |
|                           |          | (mm)            | Ares                  |        |
|                           | _        |                 | (mm2)                 |        |
| $P_{Piston}$ (Fp4)        | 1        | 58              | 2622.4                | 262.2  |
| P <sub>Piston</sub> (Fp4) | 2        | 58              | 2622.4                | 524.5  |
| P <sub>Piston</sub> (Fp4) | 4        | 58              | 2 <mark>6</mark> 22.4 | 1049   |
| P <sub>Piston</sub> (Fp4) | 10       | 58              | 2622.4                | 2622.4 |
| $F_{Spring}(Fs5)$         | Pistor   | n Spring Stiffi | ness = 264 N/         | /mm    |

Spring Designed with stiffness= 264 N/mm with respect to pressure increment from 1 to 20 bar to have dynamic balance. With this new design forces acting on the knob is zero. That result in the constant force applied on the knob by manual finger force.

## 4 Test Set Up

Test set up has been made to evaluate the Torque required towards knob to adjust the outlet pressure. Fig 8

Operating Pressure range 0 to 20 bar



Fig.9 Torque vs. Pressure Test Observation by digital torque range

#### 5. Conclusions

A systematic approach of failure mode of different components has been studied at higher operating condition. Good correlation in the theoretical calculations and simulation results is achieved for determining valve Functional dimensions and comply the safety norms.

A Design with reducing higher pressure forces towards adjusting knob device, new design with effortless operating on safety conditions by systematic study of dynamic Force inside the Pressure regulator component.

Design delivers a manual effort required to adjust knob will be constant throughout the operating range of pressure regulator and which can be controlled and easily adjusted by manual finger force.

#### Acknowledgments

I wish to express my sincere thank to Prof Khan for guidance and encouragement in carrying out project work. I also

express our sincere thanks to Dr. A.A. Pawar, Head of Department and also the staff of Mechanical Department.

## References

- Tsai, D. H., and Cassidy, D. E., 1961, "Dynamic behavior of a simple pneumatic pressure reducer," ASME J. Basic Eng., 83, pp. 253–264.
- [2] John Darlaston , and John Wintle, "Safety factors in the design and use of pressure equipment" SciDirect., 2006, pp. 472-480
- [3] EN13445:2002 The European Unfired Pressure Vessels standard, CEN, May; 2002.
- Petrowski H. Design paradigrams: case histories of error and judgement in engineering. Cambridge: Cambridge University Press; 1994.
- The Pressure Equipment Directive 97/27/EC OJEC No L181 9 July 1997 – ISBN 011 916 0927 and The Simple Pressure Vessels Directive 87/404/EEC as amended.
- [6] The Pressure Equipment Regulations 1999 (SI 1999/20010).
- [7] Dhananjay Singh Bisht, Ergonomic Assessment Methods for the Evaluation of Hand Held Industrial Products A Review
- [8] The Pressure System Safety Regulations, The Simple Pressure Vessels (Safety) Regulations (SI 1991/2749) and The Pressure System Regulations 2000 Statutory Instrument 2000 No. 1289.